A Multi-Channel Fusion Based Newborn Seizure Detection
نویسندگان
چکیده
منابع مشابه
A Multi-Channel Fusion Based Newborn Seizure Detection
We propose and compare two multi-channel fusion schemes to utilize the information extracted from simultaneously recorded multiple newborn electroencephalogram (EEG) channels for seizure detection. The first approach is known as the multi-channel feature fusion. It involves concatenating EEG feature vectors independently obtained from the different EEG channels to form a single feature vector. ...
متن کاملAutomatic seizure detection based on the combination of newborn multi-channel EEG and HRV information
This article proposes a new method for newborn seizure detection that uses information extracted from both multi-channel electroencephalogram (EEG) and a single channel electrocardiogram (ECG). The aim of the study is to assess whether additional information extracted from ECG can improve the performance of seizure detectors based solely on EEG. Two different approaches were used to combine thi...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملInstantaneous frequency based newborn EEG seizure characterisation
The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures are better represented in the joint time–frequency domain than in either the time domain or the frequency domain. Characterising newborn EEG seizure nonstationarities helps ...
متن کاملNEWBORN EEG SEIZURE DETECTION USING SIGNAL STRUCTURAL COMPLEXITY (FriAmPO4)
A method for the automatic detection of seizure in newborns is presented. The proposed method is derived from the ability to detect changes in signal structure as the newborn EEG changes from the background state to the seizure state. Matching Pursuit decomposition technique, with an overcomplete time−frequency dictionary, is shown to be an adequate technique for detecting changes in signal str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Science and Engineering
سال: 2014
ISSN: 1937-6871,1937-688X
DOI: 10.4236/jbise.2014.78055